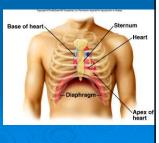
Cardiovascular System Heart

William T. Budd Virginia Commonwealth University Center for the Study of Biological Complexity Medical Careers College

Objectives

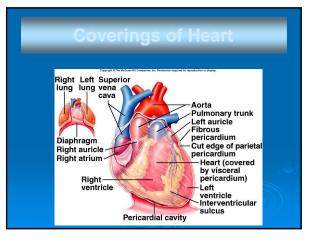

- Location of heart
- > Structure of the heart
 - Layers
 - Coverings
 - Chambers
- Structure and function of myocardial valves

Components of cardiovascular system

- > Heart- circulates blood through vessels
- > Blood vessels
 - Arteries- away from heart
 - Veins- towards heart
 - Capillaries- location of internal respiration
- > Blood- transport medium

Location of Heart

- posterior to sternum
- medial to lungsanterior to vertebral column
- base lies beneath 2nd rib
- apex at 5th intercostal space
- lies upon diaphragm


Coverings of the heart

Pericardium-loose fitting, double layered sac

Visceral pericardium-serous membrane that is on the surface of the heart muscle

Parietal pericardium- inner layer of sac; secretes pericardial fluid

Pericardial fluid- (Serous fluid)-fluid that is between the parietal and visceral pericardium which prevents friction as the heart beats.

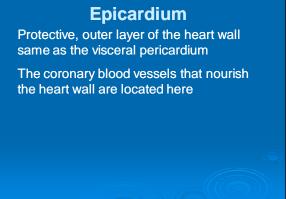
Layers of heart tissue

- > Epicardium
- > Myocardium
- Endocardium

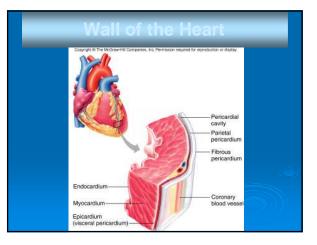
Endocardium

Inner lining

Smooth surface that permits blood to move easily through the heart without agglutination.


Continuous with lining of blood vessels

Myocardium


Middle layer made of cardiac muscle

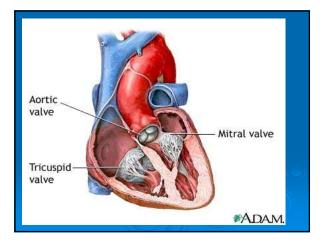
Forms the bulk of the heart wall

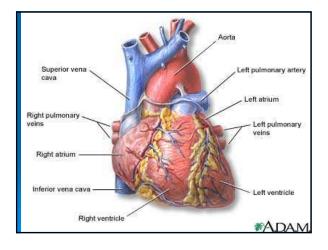
Contains the septum- a thick muscular wall that completely separates the blood in the right side of the heart from the blood in the left side.

Chambers Right Atrium

- Thinner wall than ventricles
- Receives deoxygenated blood from vena cava
 Passes blood through tricuspid valve into right ventricle

Chambers Right Ventricle

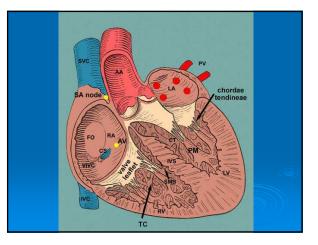

- Thicker wall than atria
- Comprises most of anterior surface of heart
- Circulates deoxygenated blood to lungs through the pulmonic valve into pulmonary trunk


Chambers Left Atrium

- Receives freshly oxygenated blood from pulmonary vein
- Passes blood to left ventricle through mitral valve

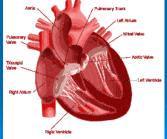
Chambers Left Ventricle

- Receives blood from left atrium
- Thickest myocardial wall
- Forms apex of heart
- Sends blood to systemic circulation via aorta



Septa

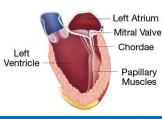
Interatrial septum


- Muscular division b/w atria
- Foramen ovale- opening in fetus
- Fossa ovalis- shallow depression; remnants of foramen ovale
- Interventricular septum
- Thick muscular wall
- · Seperates ventricles

Heart Valves

- Function- prevent blood from flowing backwards
- Responds to changes in pressure
- Two types of valves in heart

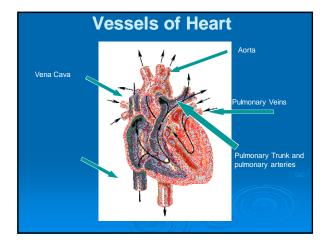
Atrioventricular valves (AV)
Semi-lunar valves


s of the Heart

Semilunar valves

- Located at exit of ventricles, originiate from endothelial lining of veins
- Heart contains two semilunar valves
 Pulmonic
 - Aortic (Frequently damaged by Htn)

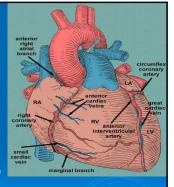
Atrioventricular Valves


Valve cusps are connected to papillary muscles Chordae tendineaetiny collagen cords that anchor cusps of valve to papillary muscles

Atrioventricular Valves

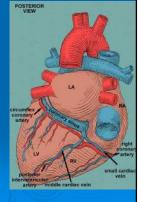
- Left AV valve (Mitral, bicuspid)
 - Contains 2 cusps
 - Subject to abuse
- Right AV valve (Tricuspid)
 - Contains 3 cusps
 - Not subjected to great abuses

11/15/2008



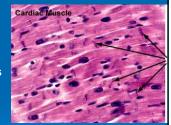
Coronary Arteries

•2 Main Coronary Arteries

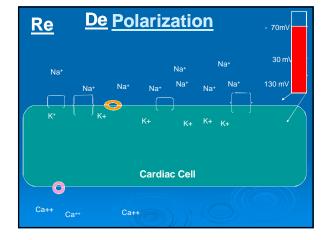

•Right CA- branches into some marginal arteries; supplies RV and posterior of heart

•Left CA- branches into AIA (LAD) and circumflex; supplies LV

Coronary Veins


 Transport deoxygenated blood to coronary sinus
 Coronary Sinus drains into RA

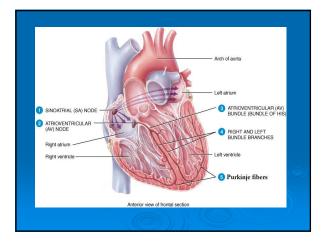
Cardiac Myocyte Physiology


- Striated cells

 Adhere to sliding
 filament theory
- Shorter cells, branched, one nucleus
- per cell
- Connected tightly by intercalated disks
- Contain gap junctions

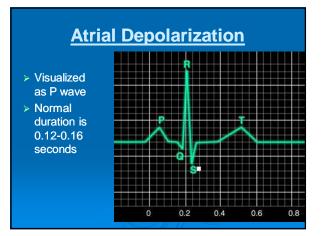
Contractile Cells of Heart

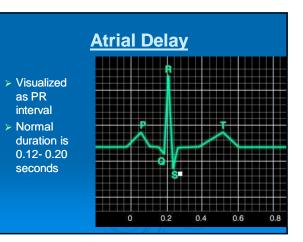
- > Remember myosin and actin
- Presence of calcium in cytoplasm leads to contraction
- Action potential is 30X longer than skeletal muscle

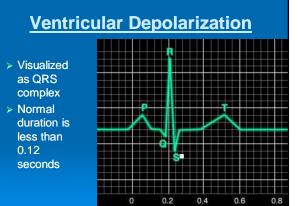


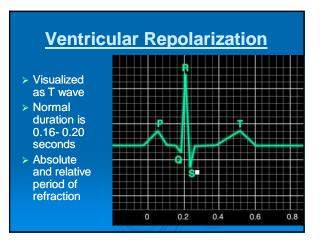
Conduction System

- Cardiac cells are automaticitic
 - They can depolarize spontaneously
- Autorhythmic cells
 - · Non-contractile cells,
 - self-excitable,
 - generate spontaneous action potentials,
 - Trigger heart contractions

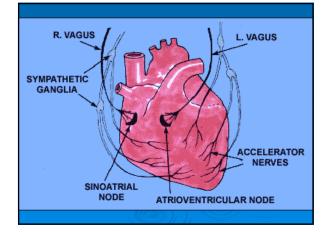

Conduction System


- Located in
 - SA node
 - AV node
 - AV bundle
- Bundle branches
- · Purkinkie system




Intrinsic Rates

- Three potential areas capable of beginning cardiac conduction
 - SA Node- Located in right atria; 60-100 bpm
 - AV Node- Located at AV junction; 40-60 bpm
 - Ventricular System- Ventricles; < 40
 Rate depends upon where in ventricles conduction originates



Innervation of heart

- Heart rate can be influenced by autonomic nervous system
- > Sympathetic
 - Speeds up heart rate and increases force of contraction
- > Parasympathetic
 - Slows down heart rate

